Intel® RealSense™ Developer Documentation

PCL Point Cloud Library

The Point Cloud Library wrapper includes code examples to demonstrate how Intel RealSense cameras can be used together with PCL (Point-Cloud Library).

Example
Description
Link to GitHub

Capture a single depth frame and convert it to pcl::PointCloud object

Capture a single depth frame using a tuple for RGB color support.

Hello World PCL

This example is a "hello-world" code snippet for Intel RealSense cameras integration with PCL. The demo will capture a single depth frame from the camera, convert it to pcl::PointCloud object and perform basic PassThrough filter. All points that passed the filter (with Z less than 1 meter) will be marked in green while the rest will be marked in red.

int main(int argc, char * argv[]) try
{
    // Create a simple OpenGL window for rendering:
    window app(1280, 720, "RealSense PCL Pointcloud Example");
    // Construct an object to manage view state
    state app_state;
    // register callbacks to allow manipulation of the pointcloud
    register_glfw_callbacks(app, app_state);

    // Declare pointcloud object, for calculating pointclouds and texture mappings
    rs2::pointcloud pc;
    // We want the points object to be persistent so we can display the last cloud when a frame drops
    rs2::points points;

    // Declare RealSense pipeline, encapsulating the actual device and sensors
    rs2::pipeline pipe;
    // Start streaming with default recommended configuration
    pipe.start();

    // Wait for the next set of frames from the camera
    auto frames = pipe.wait_for_frames();

    auto depth = frames.get_depth_frame();

    // Generate the pointcloud and texture mappings
    points = pc.calculate(depth);

    auto pcl_points = points_to_pcl(points);

    pcl_ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PassThrough<pcl::PointXYZ> pass;
    pass.setInputCloud(pcl_points);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(0.0, 1.0);
    pass.filter(*cloud_filtered);

    std::vector<pcl_ptr> layers;
    layers.push_back(pcl_points);
    layers.push_back(cloud_filtered);

    while (app) // Application still alive?
    {
        draw_pointcloud(app, app_state, layers);
    }

    return EXIT_SUCCESS;
}

PCL Color

This example provides color support to PCL for Intel RealSense cameras. The demo will capture a single depth frame from the camera, convert it to pcl::PointCloud object and perform basic PassThrough filter, but will capture the frame using a tuple for RGB color support. All points that passed the filter (with Z less than 1 meter) will be removed with the final result in a Captured_Frame.pcd ASCII file format. Below is an example of the final output.

int main() {

    //======================
    // Variable Declaration
    //======================
    bool captureLoop = true; // Loop control for generating point clouds
   
    //====================
    // Object Declaration
    //====================
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr newCloud (new pcl::PointCloud<pcl::PointXYZRGB>);
    boost::shared_ptr<pcl::visualization::PCLVisualizer> openCloud;

    // Declare pointcloud object, for calculating pointclouds and texture mappings
    rs2::pointcloud pc;
    
    // Declare RealSense pipeline, encapsulating the actual device and sensors
    rs2::pipeline pipe;

    // Create a configuration for configuring the pipeline with a non default profile
    rs2::config cfg;

    //======================
    // Stream configuration
    //======================
    cfg.enable_stream(RS2_STREAM_COLOR, 1280, 720, RS2_FORMAT_BGR8, 30);
    cfg.enable_stream(RS2_STREAM_INFRARED, 1280, 720, RS2_FORMAT_Y8, 30);
    cfg.enable_stream(RS2_STREAM_DEPTH, 1280, 720, RS2_FORMAT_Z16, 30);
    
    rs2::pipeline_profile selection = pipe.start(cfg); 

    rs2::device selected_device = selection.get_device();
    auto depth_sensor = selected_device.first<rs2::depth_sensor>();

    if (depth_sensor.supports(RS2_OPTION_EMITTER_ENABLED))
    {
        depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 1.f); // Enable emitter
        depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0.f); // Disable emitter
    }
    if (depth_sensor.supports(RS2_OPTION_LASER_POWER))
    {
        // Query min and max values:
        auto range = depth_sensor.get_option_range(RS2_OPTION_LASER_POWER);
        depth_sensor.set_option(RS2_OPTION_LASER_POWER, range.max); // Set max power
        depth_sensor.set_option(RS2_OPTION_LASER_POWER, 0.f); // Disable laser
    }
    
    // Begin Stream with default configs

    // Loop and take frame captures upon user input
    while(captureLoop == true) {

        // Set loop flag based on user input
        captureLoop = userInput(); 
        if (captureLoop == false) { break; }
        

         // Wait for frames from the camera to settle
        for (int i = 0; i < 30; i++) {
            auto frames = pipe.wait_for_frames(); //Drop several frames for auto-exposure
        }

        // Capture a single frame and obtain depth + RGB values from it    
        auto frames = pipe.wait_for_frames();
        auto depth = frames.get_depth_frame();
        auto RGB = frames.get_color_frame();

        // Map Color texture to each point
        pc.map_to(RGB);

        // Generate Point Cloud
        auto points = pc.calculate(depth);

        // Convert generated Point Cloud to PCL Formatting
        cloud_pointer cloud = PCL_Conversion(points, RGB);
        
        //========================================
        // Filter PointCloud (PassThrough Method)
        //========================================
        pcl::PassThrough<pcl::PointXYZRGB> Cloud_Filter; // Create the filtering object
        Cloud_Filter.setInputCloud (cloud);           // Input generated cloud to filter
        Cloud_Filter.setFilterFieldName ("z");        // Set field name to Z-coordinate
        Cloud_Filter.setFilterLimits (0.0, 1.0);      // Set accepted interval values
        Cloud_Filter.filter (*newCloud);              // Filtered Cloud Outputted
        
        cloudFile = "Captured_Frame" + to_string(i) + ".pcd";
        
        //==============================
        // Write PC to .pcd File Format
        //==============================
        // Take Cloud Data and write to .PCD File Format
        cout << "Generating PCD Point Cloud File... " << endl;
        pcl::io::savePCDFileASCII(cloudFile, *cloud); // Input cloud to be saved to .pcd
        cout << cloudFile << " successfully generated. " << endl; 
        
        //Load generated PCD file for viewing
        Load_PCDFile();
        i++; // Increment File Name
    }//End-while
   
   
    cout << "Exiting Program... " << endl; 
    return EXIT_SUCCESS;
}

Getting Started and Build

Please refer to GitHub for instructions.

Updated 2 months ago

PCL Point Cloud Library


Suggested Edits are limited on API Reference Pages

You can only suggest edits to Markdown body content, but not to the API spec.