PCL (Point Cloud Library)
The Point Cloud Library wrapper includes code examples to demonstrate how Intel RealSense cameras can be used together with PCL
(Point-Cloud Library).
Example | Description | Link to GitHub |
---|---|---|
Hello World PCL | Capture a single depth frame and convert it to pcl::PointCloud object | rs-pcl.cpp |
PCL Color | Capture a single depth frame using a tuple for RGB color support. | rs-pcl-color.cpp |
Hello World PCL
This example is a "hello-world" code snippet for Intel RealSense cameras integration with PCL. The demo will capture a single depth frame from the camera, convert it to pcl::PointCloud
object and perform basic PassThrough
filter. All points that passed the filter (with Z less than 1 meter) will be marked in green while the rest will be marked in red.
int main(int argc, char * argv[]) try
{
// Create a simple OpenGL window for rendering:
window app(1280, 720, "RealSense PCL Pointcloud Example");
// Construct an object to manage view state
state app_state;
// register callbacks to allow manipulation of the pointcloud
register_glfw_callbacks(app, app_state);
// Declare pointcloud object, for calculating pointclouds and texture mappings
rs2::pointcloud pc;
// We want the points object to be persistent so we can display the last cloud when a frame drops
rs2::points points;
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Start streaming with default recommended configuration
pipe.start();
// Wait for the next set of frames from the camera
auto frames = pipe.wait_for_frames();
auto depth = frames.get_depth_frame();
// Generate the pointcloud and texture mappings
points = pc.calculate(depth);
auto pcl_points = points_to_pcl(points);
pcl_ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud(pcl_points);
pass.setFilterFieldName("z");
pass.setFilterLimits(0.0, 1.0);
pass.filter(*cloud_filtered);
std::vector<pcl_ptr> layers;
layers.push_back(pcl_points);
layers.push_back(cloud_filtered);
while (app) // Application still alive?
{
draw_pointcloud(app, app_state, layers);
}
return EXIT_SUCCESS;
}
PCL Color
This example provides color support to PCL for Intel RealSense cameras. The demo will capture a single depth frame from the camera, convert it to pcl::PointCloud
object and perform basic PassThrough
filter, but will capture the frame using a tuple for RGB color support. All points that passed the filter (with Z less than 1 meter) will be removed with the final result in a Captured_Frame.pcd ASCII file format. Below is an example of the final output.
int main() {
//======================
// Variable Declaration
//======================
bool captureLoop = true; // Loop control for generating point clouds
//====================
// Object Declaration
//====================
pcl::PointCloud<pcl::PointXYZRGB>::Ptr newCloud (new pcl::PointCloud<pcl::PointXYZRGB>);
boost::shared_ptr<pcl::visualization::PCLVisualizer> openCloud;
// Declare pointcloud object, for calculating pointclouds and texture mappings
rs2::pointcloud pc;
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Create a configuration for configuring the pipeline with a non default profile
rs2::config cfg;
//======================
// Stream configuration
//======================
cfg.enable_stream(RS2_STREAM_COLOR, 1280, 720, RS2_FORMAT_BGR8, 30);
cfg.enable_stream(RS2_STREAM_INFRARED, 1280, 720, RS2_FORMAT_Y8, 30);
cfg.enable_stream(RS2_STREAM_DEPTH, 1280, 720, RS2_FORMAT_Z16, 30);
rs2::pipeline_profile selection = pipe.start(cfg);
rs2::device selected_device = selection.get_device();
auto depth_sensor = selected_device.first<rs2::depth_sensor>();
if (depth_sensor.supports(RS2_OPTION_EMITTER_ENABLED))
{
depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 1.f); // Enable emitter
depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0.f); // Disable emitter
}
if (depth_sensor.supports(RS2_OPTION_LASER_POWER))
{
// Query min and max values:
auto range = depth_sensor.get_option_range(RS2_OPTION_LASER_POWER);
depth_sensor.set_option(RS2_OPTION_LASER_POWER, range.max); // Set max power
depth_sensor.set_option(RS2_OPTION_LASER_POWER, 0.f); // Disable laser
}
// Begin Stream with default configs
// Loop and take frame captures upon user input
while(captureLoop == true) {
// Set loop flag based on user input
captureLoop = userInput();
if (captureLoop == false) { break; }
// Wait for frames from the camera to settle
for (int i = 0; i < 30; i++) {
auto frames = pipe.wait_for_frames(); //Drop several frames for auto-exposure
}
// Capture a single frame and obtain depth + RGB values from it
auto frames = pipe.wait_for_frames();
auto depth = frames.get_depth_frame();
auto RGB = frames.get_color_frame();
// Map Color texture to each point
pc.map_to(RGB);
// Generate Point Cloud
auto points = pc.calculate(depth);
// Convert generated Point Cloud to PCL Formatting
cloud_pointer cloud = PCL_Conversion(points, RGB);
//========================================
// Filter PointCloud (PassThrough Method)
//========================================
pcl::PassThrough<pcl::PointXYZRGB> Cloud_Filter; // Create the filtering object
Cloud_Filter.setInputCloud (cloud); // Input generated cloud to filter
Cloud_Filter.setFilterFieldName ("z"); // Set field name to Z-coordinate
Cloud_Filter.setFilterLimits (0.0, 1.0); // Set accepted interval values
Cloud_Filter.filter (*newCloud); // Filtered Cloud Outputted
cloudFile = "Captured_Frame" + to_string(i) + ".pcd";
//==============================
// Write PC to .pcd File Format
//==============================
// Take Cloud Data and write to .PCD File Format
cout << "Generating PCD Point Cloud File... " << endl;
pcl::io::savePCDFileASCII(cloudFile, *cloud); // Input cloud to be saved to .pcd
cout << cloudFile << " successfully generated. " << endl;
//Load generated PCD file for viewing
Load_PCDFile();
i++; // Increment File Name
}//End-while
cout << "Exiting Program... " << endl;
return EXIT_SUCCESS;
}
Getting Started and Build
Please refer to GitHub for instructions.
Updated almost 2 years ago